miércoles, 18 de marzo de 2009

Un descubrimiento sorprendente

Descartada totalmente la posibilidad de poder determinar por medio de algún experimento propio de la mecánica si algo está en estado de movimiento con respecto a algún punto de referencia que pudiera considerarse absoluto, en cierto momento renació la esperanza de que tal cosa pudiera lograrse no por medios mecánicos sino por medios ópticos llevados a cabo dentro de un vagón de ferrocarril perfectamente blindado. Es aquí cuando entra en el panorama el físico matemático James Clerk Maxwell, el cual asentó firmemente sobre bases matemáticas los principios básicos del electromagnetismo enunciados desde los tiempos de Faraday, enunciando las cuatro ecuaciones básicas del electromagnetismo con las cuales ganó para sí mismo la inmortalidad en la comunidad científica:




Estas cuatro fórmulas están elaboradas en notación vectorial (las cantidades D, B, E, H y J son vectores, o mejor dicho campos vectoriales en analogía con las líneas de fuerza que representan un campo gravitacional, y como tales son cantidades que tienen dirección y sentido como el viento que sopla en las praderas), lo cual simplifica enormemente el pronunciamiento de las mismas debido a que el enunciamiento es independiente del tipo de coordenadas (Cartesianas, polares, cilíndricas, esféricas, etc.) que se utilicen en el estudio de algún fenómeno electromagnético particular. La primera ecuación nos dice esencialmente que el flujo neto (divergencia) de las líneas de fuerza eléctrica que salen (o entran) de cualquier recipiente cerrado depende de la densidad de la carga eléctrica ρ que encierra dicho recipiente (para un recipiente dentro del cual no hay carga eléctrica alguna almacenada en su interior, el flujo neto de las líneas de fuerza eléctrica sobre toda la superficie del recipiente es cero); la segunda ecuación nos dice que todas las líneas de fuerza de un campo magnético (como las de un imán) forman siempre un bucle cerrado (no existen monopolos magnéticos, esto es, una partícula de la cual salgan líneas de fuerza de un campo magnético correspondientes al polo Norte de un imán, y otra partícula de la cual salgan líneas de fuerza de un campo magnético correspondientes al polo Sur del imán) y por lo tanto la divergencia de las líneas del campo magnético es siempre cero (el flujo neto de las líneas de fuerza del campo magnético que entren a cualquier recipiente cerrado restado del flujo de las líneas de fuerza del campo magnético que salgan del mismo recipiente será exactamente igual a cero en todos los casos); mientras que la tercera y la cuarta ecuación nos dicen que todo campo eléctrico que varíe con el tiempo producirá campos magnéticos rotacionales del mismo modo que todo campo magnético que varíe con el tiempo producirá a su vez campos eléctricos rotacionales.

Se puede demostrar a partir de las ecuaciones del campo electromagnético de Maxwell, como el mismo Maxwell lo descubrió por vez primera, que la velocidad de una onda electromagnética en el vacío que consta de un campo eléctrico E y un campo magnético B perpendiculares el uno al otro y alternantes sinusoidalmente en el tiempo:





depende única y exclusivamente de la permitividad eléctrica del vacío ε0 y de la permeabilidad magnética del vacío μ0, y la velocidad para dicha onda electromagnética debe ser:



Los valores experimentales para estos parámetros ya eran conocidos en los tiempos de Maxwell, de modo tal que no fué para él ningún problema llevar a cabo una substitución de dichos valores para poder saber cuál era la velocidad de una onda electromagnética propagándose en el vacío.

PROBLEMA: En el sistema de unidades SI (MKS) se aceptan generalmente como válidos los siguientes valores experimentales para la permitividad eléctrica y para la permeabilidad magnética del vacío:

ε0 = 8.854 × 10-12 farad/metro

μ0 = 12.5664× 10-7 henry/metro

Determínese, a partir de estos valores experimentales, la velocidad de una onda electromagnética propagándose en el vacío.

Puesto que las unidades SI del farad y el henry son algo crípticas para quienes no están familiarizados con estas unidades, las pondremos en una forma más convencional acorde con las unidades que se utilizan en la Mecánica.

Empezaremos con la unidad del farad. De la teoría básica del campo eléctrico, la capacitancia C de un condensador es igual a la carga eléctrica Q almacenada por el condensador dividida entre el voltaje V que hay entre las terminales del condensador, según la fórmula C = Q/V. Esto significa que, dimensionalmente, un farad es igual a un coulomb de carga eléctrica dividido entre un volt:

1 farad = 1 couloumb/volt

Entonces la unidad de la permitividad eléctrica es:

1 farad/metro = 1/(1 coulomb/volt) = 1 coulomb/volt·metro

Pero el voltaje V se define como el trabajo W hecho sobre una unidad de carga Q para moverla de un punto con un potencial V1 a otro punto con un potencial V2, dividido entre el valor de la carga, o sea V = W/Q. Y el trabajo mecánico se define como el producto de la fuerza aplicada (medida en newtons) por la distancia recorrida (medida en metros). Entonces, dimensionalmente hablando, una unidad de voltaje es igual a:

1 volt = 1 newton·metro/coulomb

Entonces podemos escribir la unidad dimensional de la permitividad eléctrica del modo siguiente:

1 coulomb/(1 newton·metro/coulomb)·metro

O sea:

1 farad/metro = 1 coulomb²/newton·metro²

De este modo:

ε0 = 8.854 × 10-12 coulomb²/newton·metro²

Ahora trabajaremos con la unidad del henry. El henry es la unidad utilizada para medir la inductancia eléctrica L de una bobina, de acuerdo con la fórmula:

ε = - L di/dt

De modo que, dimensionalmente hablando:

1 volt = 1 henry · (1 ampere/segundo)

Pero un ampere de corriente eléctrica es por definición igual a un coulomb por segundo de carga eléctrica Q atravesando una superficie imaginaria:

1 ampere = 1 coulomb/segundo

Entonces:

1 volt = 1 henry · (1 coulomb/segundo)/segundo)

Despejando para la unidad del henry:

1 henry = 1 volt · segundo²/coulomb

Entonces la unidad dimensional SI para la permeabilidad magnética μ0 puede escribirse en la siguiente forma igualmente válida:

1 henry/metro = 1 volt · segundo²/coulomb · metro

De este modo, utilizando el equivalente “mecánico” del volt obtenido en el caso de la permitividad eléctrica, podemos escribir la permeabilidad magnética del modo siguiente:

μ0 = 12.5664× 10-7 newton · segundo²/coulomb²

Podemos proceder a la aplicación de la fórmula de Maxwell para la velocidad de una onda electromagnética verificando al mismo tiempo la correcta cancelación y simplificación de unidades:

μ0 ε0 =
(12.5664·10-7 newton·seg²/coulomb²)(8.854·10-12 coulomb²/newton·metro²)

μ0 ε0 = 1.1126·10-17 segundo²/metro²

Finalmente:

v² = 1/μ0 ε0 = 1/1.1126·10-17 segundo²/metro²

v = 1/(3.356·10-9 segundo/metro)

v = 299,795,638 metros/segundo

Este resultado seguramente habrá llamado de inmediato la atención de Maxwell, porque esta es precisamente la velocidad de la luz en el vacío. Y puesto que la luz viaja en el vacío a esta velocidad, Maxwell concluyó de inmediato que la luz puede ser considerada como una onda electromagnética que consta de campos eléctrico y magnético alternantes. A la velocidad de la luz se le identifica comúnmente en la actualidad con la letra c, de modo tal que la conclusión de Maxwell puede ser enunciada de la siguiente manera con el significado filosófico que ello conlleva:



Este descubrimiento sorprendente presentó casi de inmediato un problema fundamental. Siempre que hablamos de la velocidad de algo lo hacemos tomando otra cosa como referencia para medir dicha velocidad. Si decimos que algo, por ejemplo un avión, tiene una velocidad de 10 metros por segundo, entonces debe de estarse moviendo a 10 metros por segundo con respecto a otra cosa, en el caso del avión, con respecto al suelo. No tiene sentido ni lógica alguna hablar acerca de la velocidad de algo utilizando ese algo como su propia referencia del mismo modo que no tiene sentido alguno hablar acerca de una línea paralela cuando no existe otra línea recta con respecto a la cual se pueda compararla para decir que es paralela, del mismo modo que no podemos decir que algo se encuentra “arriba” cuando no hay nada “abajo” de ese algo. Y el resultado obtenido no es algo que podamos reinterpretar a nuestro antojo, ya que la permitividad eléctrica y la permeabilidad magnética del vacío son atributos propios universales del mismo vacío que darán los mismos valores en cualquier parte del Universo en donde nos encontremos.

Lo interesante de la fórmula de Maxwell es que la velocidad de la luz aparecía como un valor único, constante, invariable. ¿Pero con respecto a qué? Los físicos clásicos entrenados en la filosofía del universo mecanístico de Newton, presionados a proponer alguna salida al dilema sobre qué exactamente significaba esa velocidad de la luz considerada como una onda electromagnética no tardaron en inventar el medio en el cual se transmitía dicha onda, y la respuesta natural dada en aquél entonces fue que esa era la velocidad de la luz con respecto al éter (la palabra aquí no tiene ninguna relación con el compuesto químico óxido de etilo del mismo nombre con fórmula química (C2H2)2O que es utilizado como anestésico por los doctores, sino con la idea de lo que es etéreo, celestial, algo llenando a la bóveda celeste de confín a confín). Para formular tal proposición se tomó en cuenta que, si de acuerdo con el resultado obtenido por Maxwell, la luz es una onda electromagnética, entonces para poder propagarse de un lado a otro tenía que hacerlo sobre el medio en el cual supuestamente estaba vibrando, del mismo modo en que los sonidos que escuchamos todos los días no son más que ondas acústicas formadas por compresiones y enrarecimientos del aire sumamente rápidas (en el vacío del espacio exterior en donde no hay aire, tampoco hay sonido alguno), del mismo modo en que ocurre en una “ola” de gente en cuya producción participan espontáneamente miles de aficionados presentes en un partido de futbol levántandose de sus asientos por breves instantes cuando les toca ser parte de la “ola”. Sin la presencia de los aficionados en las gradas, esas “olas” no se dán, del mismo modo que sin la presencia del aire no es posible que se produzca sonido alguno. Siendo la luz una onda electromagnética, el concepto del éter parecía una suposición lógica y natural. La postulación de la existencia del éter no sólo era deseable para suponer al éter como el medio a través del cual se propagan las ondas magnéticas luminosas, también era deseable desde el punto de vista filosófico e inclusive religioso, ya que permite evadir el tema del vacío total, ese vasto espacio entre los planetas, entre los sistemas solares y entre las galaxias en el cual a nuestra vista no parece haber absolutamente nada. Desde tiempos de la antigüedad, el vacío total ha sido una idea cuya sola mención a causado angustia e inclusive espanto entre filósofos y religiosos de renombre, porque el vacío total representa la nada, la ausencia de todo. El omnipresente éter, invisible a nuestros ojos, era la solución científica ideal con la cual la ciencia podía reconfortar a los preocupados por tal cuestión haciéndoles saber que el vacío total, el vacío absoluto, era algo que no existía, porque las vastas regiones del cosmos en donde no parecía haber nada de materia estaban repletas de éter, así que siempre había algo que llenaba “los espacios vacíos”.

El éter, aunque debía ser capaz de poder “vibrar” (para poder transmitir las ondas electromagnéticas luminosas), debía permanecer completamente inmóvil con respecto a todos los objetos materiales, más bien los objetos materiales eran los que se movían a través de él, como el movimiento de una coladera a través del agua. Aunque el éter fuese una substancia invisible, incorpórea, una substancia que no puede ser vista directamente, escuchada, tocada, olida o paladeada, el movimiento absoluto de los planetas con respecto al éter debía ser detectable recurriendo a experimentos hechos con rayos de luz.

Al éter se le suponía como algo completamente rígido, indeformable de confín a confín del Universo. Sus propiedades no podían ser menos que fantásticas. Tenía que poseer una rigidez extraordinaria para poder dar apoyo a ondas electromagnéticas de una frecuencia tan elevada como la poseída por los colores de la luz del espectro visible (en las guitarras y en todos los instrumentos de cuerda, para producir los sonidos más agudos, los de mayor frecuencia, la tensión de la cuerda que los produce tiene que ser mayor que la tensión de la cuerda requerida para producirlos sonidos graves, en virtud de que la velocidad de las ondas en una cuerda tensa es directamente proporcional a la raíz cuadrada de la tensión de la cuerda), pero pese a esta extraordinaria rigidez el éter no parecía tener efecto alguno sobre el movimiento de los planetas alrededor del Sol cuyas órbitas se podían predecir clásicamente con un buen nivel de precisión usando las fórmulas de Newton para la atracción gravitacional entre el Sol y los planetas, ignorando en dichas fórmulas cualquier efecto de retardo que el éter pudiese producir en los movimientos de los planetas. A diferencia del agua en los océanos de la Tierra, en los cuales se forman corrientes internas, en el éter cósmico no había tales “corrientes de éter”. El éter era uno solo, inamovible, como si fuese un bloque infinitamente grande de hielo, de modo que si algún observador privilegiado pudiera situarse en estado de reposo absoluto con respecto al éter en cualquier ciudad de la Tierra, podía tener la seguridad de que también estaba en reposo absoluto con respecto al éter en cualquier parte del Universo. El éter era el marco de referencia ideal con respecto al cual se podía medir el movimiento absoluto. Y aparentemente también era inmune a los cambios de temperatura así como químicamente inerte, ya que no parecía haber substancia alguna conocida con la cual el éter pudiera reaccionar químicamente. Pero no sólo era el éter algo completamente rígido a través del universo entero e inmune a los cambios de temperatura así como químicamente inerte. También era completamente poroso y permeable, estaba metido dentro de todo, inclusive dentro de las cajas fuertes de los bancos suizos o en vagones sellados de ferrocarriles en movimiento. El éter podía estar en cualquier parte en donde pudiera producirse un rayo de luz. El mismo Maxwell determinó para el éter una densidad específica de 9.36·10-19, un coeficiente de rigidez de 842.8, y una estimación de que la densidad del aire a una distancia infinita de la Tierra era 1.8·10327 veces menor que la densidad por él estimada del éter. Pero no había científico alguno que se atreviera a aventurar una hipótesis sobre cuál era la substancia de la cual pudiera estar constituído el éter, ya que en la química de aquellos tiempos no se conocía elemento alguno que pudiera tener tan fantásticas propiedades. En realidad, la única razón de ser del éter era servir como medio universal de conducción para las ondas electromagnéticas del mismo modo que el aire sirve como medio de conducción para las ondas acústicas.

La universalidad y absoluta rigidez del éter permitió suponer que la velocidad de la luz con respecto al éter tal vez pudiera utilizarse como el punto de referencia absoluto para la determinación del movimiento absoluto que no se había podido encontrar por medios puramente mecánicos hasta entonces. Aquél cuya velocidad fuera igual que la velocidad c de 300 mil kilómetros por segundo podría considerarse a sí mismo en estado de reposo absoluto con respecto al éter, mientras que todo aquél cuya velocidad fuese mayor o menor que la velocidad de la luz podría considerarse a sí mismo en estado de movimiento con respecto al nuevo estándard de referencia, el éter. Y de este modo habría también una manera de determinar quién o quiénes están en estado de reposo o en estado de movimiento con respecto a este nuevo parámetro.

Volviendo nuevamente a una nave espacial con forma de vagón de ferrocarril perfectamente blindado, sin necesidad de ver hacia el exterior bastaría con que alguien echara mano de una linterna encendiéndola para enviar un rayo de luz de un extremo a otro de la nave, y si la velocidad de ese rayo de luz medida de alguna manera resultara ser igual a la velocidad de la luz obtenida mediante las ecuaciones de Maxwell, entonces el ocupante de la nave espacial podría dar por hecho el encontrarse por alguna maravillosa casualidad en un estado de reposo absoluto. Por otro lado, si para una persona exterior a la nave espacial tal como un viajero varado en un asteroide dicha nave espacial pasara a gran velocidad junto a ella, la velocidad de la luz disparada desde la linterna dentro de la nave espacial tendría que ser necesariamente diferente según el náufrago viajando en el asteroide se moviese rápidamente con respecto a la nave espacial en la misma dirección o en dirección contraria al haz saliendo de la linterna dentro de la nave espacial. En caso de moverse con una velocidad V en dirección contraria a la dirección del haz que sale de la linterna dentro de la nave espacial con una velocidad c, el náufrago espacial en el asteroide debería ver al rayo de luz moverse con una rapidez todavía mayor igual a c+V, mientras que en caso de moverse con una velocidad V en la misma dirección del haz que sale de la linterna con una velocidad c debería ver al rayo de luz moverse con una rapidez menor igual a c-v. (moviéndose a una velocidad V igual a c, el náufrago espacial estaría avanzando a la par con el rayo de luz que le parecería estático). Y en principio podría estarse moviendo tan rápido que inclusive hasta podría dejar atrás al rayo de luz después de alcanzarlo. Por fin había una forma de poder determinar experimentalmente quién se estaba moviendo y con respecto a qué se estaba moviendo, todo en base a un simple rayo de luz, todo en base a cualquier experimento óptico que pudiese utilizar rayos de luz para la determinación del movimiento absoluto con respecto a la nueva vara de medición. Todo gracias al éter. El problema de la determinación del movimiento absoluto parecía resuelto. Al menos en apariencia.